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ABSTRACT

Optimal control algorithms that use an adaptive non-recursive
digital filter model for on-line closed-loop blocd pressure regulation
have been developed. This Automatic Therapeutic Control System was
designed specifically for the regulation of physioclogical systems, but
the design assumptions are such that it should prove very useful for

a much broader class of control problems,

An Adaptive Model Control system has been developed, the analysis
of which is presented in two parts: (1) the real-time adaptive model

synthesis procedure, and (2) the optimal forward-time controller.

The Adaptive modeling process is accomplished by the rapidly
converging O~LMS Algorithm. The conditions necessary to guarantee
convergence for deterministic inputs are presented. Mean-Square Error
bounds are presented for zero mean and nonzero mean additive-output

noise systems and also for the low-order approximation problem.

The optimal forward-time controller is described. It not only
makes efficient use of the mathematical properties of the non-recursive
digital filter model (that is, the filter gains and the state of the
filter), but also meets the time and memory constraints of a mini-
computer used on-line for this control pruoblem. The future control
inputs are de<ermined by a doubly constrained quadratic function which

is solved to minimize the mean-square control error.

The results of an experimental run are included in which these
algorithms were used to regulate the blood pressure of a dog that had

been artificially placed in a hypotensive state (shock). The results
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of this and similar experiments have been very successful from both
an engineering and medical point of view, and if the necessary arrange-
ments can be made with the local hospitals, this system will be used in

the near future as part of an intensive care unit,
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1. INTRODUCTION

A, AUTOMATIC THERAPEUTIC CONTROL SYSTEMS

Therapeutic is defined as that which is related tc the branch of
medicine dealing with the treatment of disease [1]. Thus, an automatic
therapeutic control system is any control syst>m which deals with the
treatment of an illness, sickness, interruption or perversion of function
of any of the organs in an automatic (closed loop) manner. The automatic

therapeutic control system proposed in this paper, an adaptive model

controller (see Fig.7), was used for the treatment of shock (hypotension).

For this problem a pressure-elevating drug was used to regulate the
average blood pressure of a dog which had been placed in a controlled

state of shock.

Another promising area of application is anesthesiology. Many of
the chemicals used in anesthesia, both in the liquid and in the gaseous
form, are sufficiently fast acting to utilize fully this control system.
This system for quickly controlling the degree to which a patient is

anesthetized would thus be a great help to an anesthesiologist,

B. THE CARDIOGENIC SHOCK PROBLEM

It is estimated that in the United States alone 250,000 lives are
lost annually because of cardiogenic shock [2,3]. The best treatment
for this deadly problem is still disputed, and it is claimed that cardio-
genic shock still defies the cardiologist's skill 80 to 90 per cent of

the time.

Thus, there is a need for new and improved ways to deal with cardio-
genic shock. One possible method of treatment is to regulate automati-

cally a patient's blood pressure by administering drugs with a control
1
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system. The engineering control problems associated with this approach

are what we are concerned with in this paper.

The methcds of treatment for cardiogenic shock can presently be
broken into two opposing schools of thought: those who prefer drug
therapy and those who prefer mechanical intervention, particularly with
the intra-aortic balloon pump. We are concerned with the drug therapy
approach, which can be broken into three schools of thought [2].

"The vasopressor school, which is becoming popular again,

emphasizes the need for agents which increase coronary per-

fusion pressure. But proponents of vasodilators contend

that the major need is to relieve intense vasoconstriction.

This mode of therapy reduces the work load of the heart and

redistributes blood flow to all areas of the body. Still a

third group emphasizes the need for increased myocardial

contractility to restore cardiac output,"

Regardless of the approach, the objective is to take therapeutic

measures early enough to prevent irreversible shock from developing.

Irreversible shock can be described as a state of positive feedback

where the failure of one function causes still further failure of another

function within the same control loop [4,5]. Figure 1 is a simplified
block diagram of some of the different types of feedback that can lead

to a progressive state of shock (irreversible shock)[5].

We again remind the reader that this paper is concerned with de-
scription and analysis of a control system which regulates blood pres-
sure; we do not address the larger problem of what therapy is best for

cardiogenic shock.

C. THE COMPUTER LABORATORY & OPERATING ROOM FACILITIES

The computer laboratory used in this research is located on the

Stanford Campus in the Durand Laboratory, and the operating room is
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located in Palo Alto at the Palo Alto Medical Research Foundation, A
voice grade telephone iine is used as the data link between the two
facilities (see Fig. 2). This choice of data link will make it very
inexpensive and easy to reach patients in the intensive care units at

any of the local hospitals,

The primary hardware components are shown in block diagram form in
Fig. 3. 1In the operating room, the strain gauge and drop master® are
commercially available items, while the voltage-controlled oscillator
(VCO) and drop-rate DETECTOR were designed and built at Stanford. The
acoustic couplers and the HP-21168B computer system are commercially
available items, but the frequency-to-digital counverter (FDC) and the

drop-rate ENCODER were also designed and built at Stanford.

The frequency band from 1KHz to 3 KHz is used for transmission of
the instantaneous blood pressure, The remaining channel space of the
telephone line (500 to 1000 Hz) is used to transmit the encoded drop
rate commands. A tone-burst code is transmitted each time a drop of

drug is required.

‘The HP-2116B computer is a mini-computer with a 16,000 word (16
bits per word) memory and a 1.6 microsecond cycle time. In addition to
the major components shown in Fig. 3, this computer system has a real
time clock which is required for scheduling data gathering, data process-
ing (the forward time calculations and adaptive algorithms) and data

output.

A drop master is a machine which releases one drop of fluid in response
to either an internal timer or an external command.

= e Y e T i e emvere, - -
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Fig. 3. Block Diagram of the Primary Hardware Components,
Interested readers are referred to references [6-8] for a more com-
plete description of the biomedical engineering problems and requirements
associated with patient monitoring and automatic therapeutic control !

systems.

R THE ADAPTIVE MODEL CONTROLLER

When designing controllers for real physical systems, we can cope
with only those problems that can be foreseen and allowed for in advance.
Thus, the idea of an adaptive control system which can compensate for
the time-varying and nonlinear aspects of a system is very attractive.

The adaptive control principle in essence consists of three things [9]:

1. The definition of an optimum condition of operation.
2, The comparison of the actual performance with the desired
performance,
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3. The adjustment of system parameters by means of closed-
loop operation so as to drive the actual performance
toward the desired performance,

t
4
:
i
¢

One of the simplest systems which employs these principles is the

adjustable compensator controller (see Fig. 4)., The adaptive filter is

adjusted to give, say, a minimum mean-square error. The problem with

this system is that the desired response dj which is needed t- adapt
! the filter is unknown. Note that if dj were known, then the adaptive

filter would be unnecessary.

A more workable adaptive controller is the inverse-model ccniroller
(see Fig., 5). Under the appropriate conditions this system is very use-
ful [10]. 1Its major shortcomings are due to the fact that we must have
an estimate for the delay 2N and the inverse model 9“1 must be well

defined.

Another approach is the feedback model controller (see Fig, 6)
which uses a faster-than-real-time closed-loop model of the physical
system to adapt the compensator. While this is certainly attractive
because we can exercise the upper loop in order to adapt the compensator
without disturbing the physical system, the problem lies in the fact
that the mean-square-error performance function is knownto be irregular,

non-parabolic, and containing relative optima {11].

The problems inherent in the above~mentioned systems are overcome

by the proposed Adaptive Model Controller of Fig. 7. In this system the

A A it i AT i, 0,88 810 s

identification process is achieved by the rapidly converging O-LMS

Algorithm, and the adjustable controller is a faster-than-real-time

v

2
forward-time calculation which minimizes the squared error (rj- yj) .

In this system the control is optimal in a squared-error sense if the




TEREALATERRTe e A v T T

EAN R - e b S

fl Y y‘
+ ADAPTIVE G o
FILTER -
- Vi
4
Fig. 4. Adjustable Compensator Controller.
w
_] ¢’
= 9 3 *j-N | ADAPTIVE
N\ - FILTER\
r A‘\

I g Y
o § [} )
Fig. 5. Inverse-Model Controller,

- Z A
7 Y
'+ ICOMPENSATOR §; —0
|
o
i !' €,
! ¢
| J 7
| ADAPTIVE
: ’FlLTER -
: rd
i Y
Tl 1 + y’
COMPENSATOR G -0

Fig, 6.

o]

Feedback Model Controller.

s e s 20




g ey e a1

T e e M e o sy 0 an s

T o S

OPTIMAL o5
| CONTROLLER ?.? PRESSIRE
§

r. el
) FoRwARD | X ggﬂ%; PHYSIOLOGICAL y)
o———md TIME | B |
REFERENCE | CALCULATION HOL SYSTEM [ 1‘_"

Y
BLOOD 1 SAMPLER
PRESSURE LE
COMMAND
SIGNAL
x %)
I T avapTive |
MODEL

IDENTIFICATION
PROCESS

--—-!i
Fig. 7. Adaptive Model Controller.

adaptive mocel has converged? Thus, in practice the system is run open
loop until the adaptive model has converged, and then the loop is closed

through the forward-time calculation.

We will use the following notation to distinguish between scalar,
vector and matrix variables:

1, a variable with no underlining is a scalar,

2. a variable with a single underline is a vector, and

3. a variable with a double underline is a matrix,
For example (see Fig. 8) xj is scalar input at time j, and x, £ is

the vector "input' at time j.
In addition, we will adopt the convention that the weight vector

w_, (see Fig. 8) is of length N,

*
The convergence proofs given in section 2 assume that the physiological

system is time-invariant.




2. REAL-TIME ADAPTIVE MODEL SYNTHESIS

A. W1DROW-HOFF ALGORITHM {((-LMS ALGORITHM)

The theory of least-mean-square error filter design has received
a considerable amount of attention in the last two decades. The theory
has been extended from the problems of filtering and prediction [12] to
include those of system identification, process control, and pattern

recognition. The Widrow-Hoff Algorithh [13] (see Fig. 8.)

i =Y +—”—;‘—“§5Jej (2.1)
J

where

was originally proposed for use in systems where little or no a priori
statistical information is available and where memory size and computa-

tional speed are limited. The theory of the (-LMS Algorithm and its

many variants has been pursued diligently during the last decade [14-28].

But the behavior of the o~LMS Algorithm in the presence of highly
correlated ovr dependent inputs has not been analyzed. The previous
methods of proof basically required that E[§j§§] be nonsingular,
and that the sequential input vectors be uncorrelated. The need to
alleviate these assumptions is obvious in any system where there is a

real-time identification utilized in a larger control process.

The behavior of the o~1IMS Algorithm when subjected to deterministic
inputs is the thesis of this section, Motivated by the conditions on
deterministic inputs discovered by Spain [29] for identification and

modeling of discrete linear systems, we are able to derive a related

10
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Fig. 8, Details of the Identification System, an N-tap
Non~-recursive Adaptive Filter.
condition which we c¢all an "N-dimensional input sequence'. The method

of proof was motivated by Kailath's innovations approach f30,33] in which
the input is transformed into an orthogonal sequence of vectors which
represent the 'new' information at each instant of time. The proof is
then generalized to include the effects of additive outpul noise and

high and low order approximation,

B. STABILITY OF THE (~LMS ALGORITHM

In order to gain some analytical insight as to how the ~LMS

Algorithm behaves when used as an identification process, let us

11
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represent the physiological system to be modeled by a non-recursive

discrete filter G of length N. (See Fig. 9.) The motivation for

"
[ KV'
DRUG P
FLOW BloNet

]
92 AVERAGE
G®4 - 8LOOD
. PRESSURE
W)y
eixTe - xT
€r(x,6-x w)
L
w: ADAPTIVE
W Eq MODEL
: L~ QUTPUT
Wiy

AT TIME |

Fig. 9. Idealized System Where the Physiological System
is Replaced by Its Impulse Respouse,

this representation is twofold: First, the filter gains gi,i=1,2,...N
are equal to the impulse response of the physiclogical system at times
(i~1)A where A equals the time delay between each filter tap. Thus,
from our experimental data we choose N and A such that (N-1)A
equals the total time of the impulse response and such that A is small
enough to give a '""good'" piecewise-linear approximation to the continuous
impulse response. Second, this representation gives us a one-to-one
correspondence between the elements of the filter G and the elements
of the weight vector Ej' Thus, the modeling error at time j, €.,

J

12
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can be written as follows

€ =y, - xTw
3 J =3-=3
= x’x_‘G - xrljw
-J- —3=J
= x?(G-—w_) (2.2
-3 = =3

As a worst-case analysis, we would like to know the worst that can

when x, is arbitrary, i.e., is the ~LMS Algorithm

happen to ”(_} v

stable? First, we consider the degenerate case of xj = 0, By defini-

tion, if x, =0, then (2.1) is w. = w.. Note also that if x =0,
-3 =3+t =3 =J

then by (2.2) ej = 0. The general result is that without making any

assumptions about the input, we have:

Theorem 1. Given a non-recursive filter G of length N and any

input Ej then the next weight vector Ej obtained by O-LMS

+1
adaption (0 < @ < 2) 1is such that

g ] ey o
where equality holds iff ej = 0,

Theorem 1 is proved in Appendix A.

Theorem 1 states that no matter what the input x_  1is, the distance

between wj and G is non-increasing. Thus, referring to Fig. 10, we

can see that the tip of the weight vector !j will always be contained

+1
inside some hypersphere of diameter 1&3-—9” centered on the tip of G.

in other words, (2.1) is stable (convergent) for 0 <X < 2.

13
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C. UNBIASED CONVERGENCE

Before introducing the definition of an N-dimensional input
sequence, let us examine some of the more obvious properties of the

algorithm (2.1), Take the case where = 1 and the input sequence is

_T = [100 ... 0]

_g = [otoo ... 0]

3; = [0 ... 001]
_7£§+1 = [1000 0]

then it is easy to show that given any finite Eo’ we have w, = G 1or
~j =

all j >N+ 1. Furthermore, if o #1 bhut O < o < 2, then it is not

Hn o L6
S o —j =

hard to show that

There are many such examples that demonstrate the unbiased conver-
gence of (2.1), but what can be said about an arbitrary input sequence

=]
{xj} ? So that we may deal with such a question in a rigorous manner,

we let ij be the present input vector, an arbitrary vector in an

Euclidean space EN , and let S be a subspace containing the previous

- e . . Then the present vector Xx._
N 1 vectors, §j-1’£j—2’ ’§g-N+1 p X5

can be uniquely represented in the form [ 34]

where
ﬂj 1 8 and X,+ 8
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We can now make the following formal definition of an N-dimensional input

sequence;

Definition. An N~dimensional input sequence is any sequence of vectors

[+9]
{x,}o where a sequence member is

A - -
X, = X
=J J
xj-l
x,j—N+1
e +unad

j—1
such that (1) the sequence of vectors {51}3 N has N 1linearly
independent element vectors for all j > 2N, and (2) there exists a

0 <«<B < 1 such that

> 5 for all i>N

The restrictions imposed by this definition will be relaxed in a subse-
quent development.

Consider condition (1) with N = 2, We have a matrix, Ej, say,

where
T
B, = X% = X, X
=j —j-1 j-1 j-2
%% X, x
=J J j-1

At time j, the scalar xj is the only new input value, and if detgjﬁo

then we must have one of two cases: if xj_2 =0 then xj is arbitrary,
else x2
j-1
X, ;éx‘]
b 3-2

16
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Condition (2) excludes a set of values x_ at time j which would produce
J
. N
vectors Ej in E whose boundary defines a circular hypercone centercd

at the origin with its axis perpendicular to §S. To see this note that

2
= 2ﬂj 520
(ES I 3
and thus

ol 2 =% ||

{2
A constant input vector is forbidden if we are to satisfy the

definition of an N-dimensional input sequence., It is obvious that we
wish to exclude such a sequence, for one cannot measure system dynamics
without perturbing the system. The fact that 2, must have rank N
corresponds te the fact that there are N states in the filter and all
states must be excited to be identified. Equivalently, the filter spans
N

E therefore 2j must have N linearly independent rows if it is to

span EN,

Theorem 2, Given a non-recursive filter G of length N, and an N-
dimensional input sequence [xj}z, the weight vector Ej obtained

by 0-LMS adaption (0 < o< 2) converges to G as Jj - o.

Theorem 2 is proved in Appendix A. The method of proof is illustrated
in Fig., 10 for N = 2, The input vectors Xj are operated on in the

convergence proof in groups of N by a transformation which yields
. = X, - X,
3J =J —J

such that ﬂj is orthogonal to all N - 1 previous Ej's in the group.

17
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This is a Gram-Schmidt transformation which restarts every time N
vectors have been processed. Thus, the quantity Hﬁ'.-G” at any time
J =i

j is bounded above by the convergence due to the ﬂj's. {This follows

from Theorem 1 and the orthogonal nature of the 3j's.) The 1.'s are

the "new information' and are all non-zero due to the fact that by defi-

nition Ej , has rank N. Note that the closer ﬂj is to x‘j (the

closer © is to 1) the faster w_ will converge to G. For the

example considered in Section 2.C, Ej = zj and ©§ = 1 because the

input sequence was itself orthogonal. The minimum rate of convergence

is determined by the size of 5.

It is of interest to note that the assumption of an N-dimensional
input sequence {fj}: is more restricted than is necessary to guarantee
unbiased convergence. Assume that we do have M- N (where M > N)
dependent vectors in the sequence {fj}:' By Theorem 1 we know that

J
to adapt the weight vector Ej' the upper bound defined by the 17's

“wj-GH is non-increasing. Also, when a dependent vector x_ is used
My -z X

(see Fig. 10) does not change because 1 1is equal to zero. Thus, the
J
upper bound does not change for M - N adaptionsbut decreases normally

for the remaining N adaptions, Therefore, the first part of the defini-

tion of an N-dimensional input sequence can be modified to read ...''such
that there exists a finite M > N and the sequence of vectors [Ej}g:;
has N linearly independent element vectors for all > 2M. " ... If we
look at any group of M input vectors we are guaranteed that

Hﬁj+M-9M < HEJ -gﬁ. Since M is finite, this occurs an infinite

number of times and we have

lim w, = 9 .

Jo >

18
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D. CONVERGENCE OF THE ADDITIVE-OUTPUT-NOISE SYSTEM

It is hard (o imagine a real-world process that does not have somc
form of additive output noise. 1In addition, one inevitably introduces
noise when trying to make measurements, The measurement noise can be
reduced but it is never zero, For the case of additive output noise

n, we have .
J T,
vy = X6+

J 3

and thus (2.2) is

€, = x?(G—w,)+ n.
J ~=J = =] J

Because n_, 1is a random variable it is necessary to look at the behavior
of the expected value of the weight vector ;j as j -« . To start

with let us consider the system where the noise process is zero mean:

Theorem 3. Given a non-recursive filter G of length N with additive

2
output noise (iid, zero mean and finite variance <) and an N-

dimensional input sequence [xj}: ; then the expected value of the
weight vector ;j obtained by @-LMS adaption (0 < 2 < 2) con-

verges to G as J -s o« and an upper bound for the mean-square

error is

—»> o | =i -]

im [x?(w,-g)]z < ~5
6(2"a6)"iminﬁ

Theorem 3 is proved in Appendix A,

Thus given a Zzero mean noise source which is uncorrelated with the

input sequence {x_}oc , the expected value of the weight vector ;j
~j'o -

converges to G as j o « In addition we have that the MSE (mean

square error) is a function of the adaption coefficient y. Thus the

19



smaller ¢ 1is the smaller the MSE will be, hut at the same time the
slower the rate of convergence will be, In practice, ¢ is made close
to one during periods of initialization or rapid changes in the physio-
logical process, After these periods O 1is then reduced. TFor the
experiments described in Section 4, & was made as small as 0.2. Note
also that the MSE is a function of the maximum and minimum input vectors.
The fact that the bound is divided by “EminHz is not unreasonable,
Consider the example where we have a zeroc input and a non-zero output

(due to the noise source). 1In this situation the MSE is not well defiped.

Depending on the system, this may be considered an undesirable
feature, In addition there is little reason to believe that the physio-
logical systems one may want to model have zero mean additive output
noise. To handle bias in the observation noise it is necessary to intro-

duce a non-linear system,

Definition., The avgmented weight vector ws is the vector

at time j, where the augmented input vector x' is

=J

The new weight v, is referred to as the bias weight because under

20
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suitable conditions its expected value ;D converges to the mean
value (bias) of the process. Note that the resuliing model is non-

linear,

!
S
St

y, =

W X + W
j-k+1
I opm Koa-k+ o

Now we have the following result:

Theorem 4. Given a non-recursive filter G of length N with additive
output noise (iid, mean B and finite variance 02) and an N-
dimensional input sequence (ij]z then the expected value of the
augmented weight vector ES obtained by O~LMS adaption (0<q<2)
converges, namely Ej converges to G and WO converges to 8

as j-» o, and an upper bound for the mean square error is

4 2N“ “2
. 2 o Nijx
1im T —~max
J —>°°[§J' Rt 9)] 2 T3z - a0)

Theorem 4 is proved in Appendix A,

The augmented (~IMS Algorithm thus has the very nice property that
lim Wo =pf and lim W o= G. Furthermore, we notice that the norm
jJo = . Jow
squared of the minimum input vector is one. Thus, for all finite input
vectors xj, the MSE is finite. 1In the bound for the MSE, a2 has
been replaced by its upper bound of 4, The author conjectures that the

2

MSE bound is still a function of ( . The difficulty of working with a

nonzero mean noise arises in the proof because the X-LMS Algorithm is

not a linear process , and the mean 2 is not known a priori.

21



E. CONVERGENCE OF THE HIGH AND LOW ORDER MODELS

From both a practical and a theoretical point of view it is impor-
tant to know how the (~LMS Algorithm behaves when the length of the
model is not equal to the system being modeled. Experimentally it is
unlikely that the length of the impulse response, G, will be known
exactly a priori, Theoretically it is advantageous to make N as small
as possible because this reduces the MSE bound. The usual rule of thumb
is to make the total delay time of the tapped delay line of the adaptive

model at least as long as or longer than G, in which case we have:

Corollary 1, Given a non-recursive filter G of length M <N and an
N-dimensional input sequence ££J): then the weight vector v,
obtained by (-LMS adaption (0 < G < 2) converges to § as

j = o« where

-
§-[ ¢
0
0
N-M zeros
0
b —t

Proof of Corollary 1.

Since the addition of feedforward terms of zero gain does not
affect the output of G, substitute § for G in the proof of
Theorem 2, 8

This completes the proof of Corollary 1.

Thus, when the model is of higher order than the physiological

system, the primary effect is increased MSE.
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In the event that the model is of lower order than the physiological
systeu, the problem is much more complicated, Decompose the filter G

~ ] ~
into two parts G and G where G is the first N elements of G

and § is the remaining elements (see Fig., 11). 1In this way ;5 = Egg
g T
and yj = zgjg so that (2.2) is given by
T e S
€.=x&G-wJ+xJG
J ~3 - =J i

Now unless we can make some statements apbout the long term behavior of

the input sequence

we cannot say what 1lim V¥, 1s equal to. To see this we make the
following constructigg? °°Suppose we interpret ?d as being an additive
output noise, then ;; must have a stationary mean and variance if
Theorem 4 is to apply. While this may be the case for some systems,
this is certainly not required in the definition of an N-dimensional

input sequence. But if the input sequence can be modeled by a stochastic

process and if Ej and xdj are uncorrelated, then Theorem 4 applies.

This being the case, it is advisable to design the identification
system to be as long as if not longer than the maximum possible length

of the impulse response of the physiological system.
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3. FORWARD TIME CONTROLLER

A. THE MINIMIZATION PROBLEM

The problems in optimal control are typically associated with
dynamic systems evolving in time where the systems are described by a
set of differential equations [36-39]. Mathematically formulated, the
determination of the extrema (optimal points) of these functionals is
in the case of the

a problem in the calculus of variations. However,

adaptive model controller of Fig. 7, the dynamic system is modeled by

(3.0)

This mathematical formulation (parameterization) of the dynamic
system in conjunction with the assumption that the reference input ri
is known for finite future time leads tco a function minimization algo-
The development of

rithm which does not use the calculus of variations.

this algorithm is the thesis of this section.

Let L = integer constant
N = the number of weights
3} = the current time, and
T = LN + J
The reference input ri and a set of constraints ai, bi’ c:,l & di
are assumed to be known for all i = j+l1, j+2, ... T. Thus the problem

is to determine xi for all 1 = j+1, j+2, T such that

T

2
Z Gy, -7r,) (3.1)

i=j+1

25



iz minimized subject to the constraints

a b
1 SY; 80
¢, <x, <d,
1 — 1 - 1
where
N
Yy = Z, X iaka1 1= g+l 342, o0 T

The blood pressure (output)constraints ai and bi are needed
because there is a minimum value above which the blood pressure must
remain at all times (note that a, < 0 has no meaning in this problem!)
and likewise, there is a maximum value of blood pressure that is safe
for the patient. The drug rate (input) constraints <, and di cor-
respond to the fact that there is a minimum and maximum drug flow rate.
The minimum flow rate is that rate which will keep a blood clot from
forming in the catheter. If a blood clot forms, the catheter must be
disconnected from the drug supply and flushed to clear the blood clot.
The maximum flow rate is determined by the maximum amount of fluid that
can be added to the blood without causing undesired side effects.

The minimization of the squared control error (3.1) is used for two
reasons. First, it produces very satisfactory control, and second, it
allows a considerable reduction in the mathematical complexity of the
forward time calculations needed to achieve closed loop control. The
forward time control algorithm described here is thus optimal in a
minimum squared error sense with respect to "controlling” the discrete
non-recursive filter model, The optimality of this approach carries

over to the entire control system when the model has converged.
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Before we begin the solution of the minimization problem, it is
instructive to discuss some of the overall system requirements and model
properties which have been used in choosing the most desirable algorithm.
Notice that this representation of the physiological system (the "plant”
to be contrelled) gives us not only a simple formula for determining the
output given the input, but it also gives us the state® of the model.
This is very important in achieving control because we are dealing with
a feedback system and must be able to contrcl at Eli times. That is,
we do not want to wait until the transients from the last correction
have died out before we make the next correction,

The overall system requirements arise from the need to run this
model reference system in real-time on a mini-computexr. These require-
ments are:

1. The algorithm should make efficient use of memory since the
total amount of memory available for this part of the system
is small (3-4K words).

2. The number of arithmetic operations should be minimized be-
cause these operations are not very fast oh mini-computers and
there is a limited amount of time available,

3. The algorithm should caiculate the solution iteratively. An
aléorithm which obtains an exact solution in T seconds is
useless if less than T seconds is available, while an algo-
rithm which iteratively refines the initial guess has an im-

proved "solution' at all times,

*The model is a non-recursive digital filter; therefore the state of the
model is precisely Ej
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4. The algorithm should converge rapidly and in a finite number

of steps even when many constraints are active.

B. THE FORWARD TIME CALCULATION

The solution of (3,1) is divided into four steps (computation
phases). In this way the "solution' of (3.1) is refined in proportion
to the amount of processing time available at time j. Physiological
systems quite typically have some amount of transport delay, This means
that several of the first weights along the non-recursive digital filter
model would be equal to zero. In practice these weights are not exactly
equal to zero, hut instead vary by some small amount g about zero (sece
Table 1), This is handled experimentally by labeling all ]wi( < & as
being zero. The f{irst nonzero weight “b is then referred to as the
first weight of !j where Ej now has N-J elements. At the same
time, the model is iterated forward ¢ cycles. In this way the model
is transformed into an equivalent system with no delay,and the new W

is not equal to zerc (this is needed hecause we will have to divide by

W, to get the solution to (3.1)).

The first numerical task is to get a feasible® solution as fast as
possible (recall that the amount of time available for the solution of
(3.1) is not known): This is done by recognizing that if thelplant is
stable then it will have a steady state output which is equal to r.

We can then use (3.0) to find a feasible input., Thus, we have

Phase 1:
Find the steady state solution Xoo and then let X, = xss for all
i = j+1,3+2, ... T. Thus we have

*
A solution is feasible if the constants are satisfied. Thus xi is

feasible iff ¢, < x, <d, and a_ <y.<b,.
i—- "i-="1 i="1i-"1
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This solution is interior to the boundary of the feasible domain,

but it is not likely to be the optimal solution.

Phase 2:

Check to see if the problem can be solved with zero error. Set

(yi- ri)2 =0 for all i = j+1,j+2, ... T and solve for x,:

) -~
xi, ci S xi S di
X, = (3.2)

undefined otherwise

where

=2
R = " (3.3)

If Xy is undefined for any i then Phase 2 fails and we proceed with

Phase 3; otherwise we have the optimal solution for (3.1) and are done.
Phase 3 is a heuristic procedure motivated by the solutions obtained
using Rosen's gradient projection method (Phase 4). It was found that the
solutions for the optimal drug rates obtained in Phase 4 could be fitted
with exponentially decaying envelépes. Intuitively this is reasonable
because we would expect that after a change in the reference input, the
drug rate would change greatly at first and then settle to a steady state
value. This heuristic procedure we call the "clipped" solution because

the drug rates xi are not allowed to be outside of this envelope. Thus,

the heuristic procedure is that if the drug rate ?i calculated in (3.3)
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is outside of the envelope, it is replaced by the value of the enveloupe
(see (3.4)). (Note that the results of the Phase 2 calculation are direct-

ly usable in Phase 3.)

Phase 3:

Check to see if the "clipped' solution will satisfy the output

(blood pressure) constraints, Solve for Xis i o= j+41,3+2, ... T until

i i i
where
UR., ®. > UB,
1 1 — 1
x, =4 %, 1B, <% <UB, (3.4)
1 1 1 b 4 1

LB , ¥, < LB,
1 - 1

and where

g
1]

il

UB, min[di,UCi]

LB, = max[ci,LC ]

i

UCi =X o+ T exp[-T(i-j)]

o . T exp[-T(i-j)]

where B is defined by

1
¥ = 'N—L 1“(T/(-,)

where

Te max‘x —x,‘ allowed at time i = j
ss i
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0>

{ = max|x_ = x_ allowed at time 3 -1
EEEN

If Phase 3 is successful use its results as the initial guess in Phase 1.
else use the results from Phase 1. 1In order to describe the method used
in Phase 4 it is necessary to formulate (3.1) as a nonlinear programming
problem. Recall that

Yy o= Xg¥y 1 = j+1,3+2, ... T

or in matrix form

r- b r

’J+1

Vi

Rnown
-

]
,J#l+1

. to be

. optimized
T2 J

-~

L
CONSTANT

where the past inputs xj are known and the future inputs

xj-N+2 S

cee X are to be optimized, Notice that the upper left hand biock

X541 T

of this matrix can be replaced by a constant vector hi,say; thus we have

x
yj+1 3+1 J+1
y‘j+2 j+2 XJ +2
= 3.
Yyan By N + (3.95)
YyeNa1 P
y h w, . w \\\\:\\\\ x
T T N 2 1 T
— - - - L— J -
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or letting i = j + 1 for convenience, and defining the vectors, we

write (3.5} as

where
_ . w X y k<3 + N (3.6a)
h = k:?LJ k+1 " 3-k+l
0 , k>3 +N
and
o for m >«
wxm = 0 for kK >N and m<«x -« N (3.6b)
h
WK+1-m elsewhere
(at time j)

Note that 22 is in lower triangular band form with bandwidth N, and
that all of the elements on any given diagonal are identical, Therefore
using (3.6b), only N computer words are required to store 0 instead
of (LN)2 words. Furthermore, g inverse exists because wl is not

equal to zero and is easily obtained by one front-solve* operation. We

can now construct the following quadratic minimization problem. Minimize

(yi -r.)
i=j+1
where
T;J
y. = h + W, .
i i = i-j,k  j+k

*When the matrix of coefficients for a system of equations is lower
triangular, the solution is readily found by solving the equations
one at a time from the top down; hence the name front-sol-e.
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and

r, = reference input

Define the error vector as

Hk>

= Wx. +h, - r (3.7
Thus, the parameters to be optimized are

-1 -1
L - TR A

and the function we want to minimize is

1 T
£(z,) = E(Eig-i) (3.8)
where the constraints are now given by
a, - r, <z <b, = r, (3.9a)
=i -i-=-1i--i —i
and
e, - e -ny) <8z <d - W, - ) (3.9b)
-1 = -1 4" -= - -=1 = =i =i

The desired form for the constraint equation in the nonlinear programming

problem is

>4 k =1,2, .., 4LN
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where

=1 k =1,2, ... 4LN

Rearranging the constraint equations (3.9a) and(3.9b) into this form

we get (without normalizing)

TR s
-1 -b. +r
-1 -1

- - (3.10)
w-t e, - Wl - n)

= -1 = e i
-t cd, o+ B . - n)

R == ] | - = pul —1 _

The motivation for this formulation is now apparent because we have

that the gradient of f 1is given by

g = grad(f(z,)) =z,

and the Hessian matrix of second partial derivatives of f is given by

Gz) = 1 . (3.11)

s

One can now apply Rosen's gradient projection methed. In general,
this method gives linear convergence since the direction of steepest
descent is taken. However, in our case, where the Hessian is I, the
convergence is quadratic, and hence the minimum of f(Ei) in any given
subspace can be found in one step. A general description of Rosen's algo-
rithm for the special case where G 1is the identity matrix, is given in

Appendix B, A programmed version of Phase 4 is given in Appendix C,
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Phase 4:

1. Using (3.7) we set

and

where Ek denotes the error vector at the kth iteration in solv-
ing for the optimal Ei' and Ei is given by (3.6a). It is
known from previous calculations in Phases 1, 2, &3, that EO

is feasible (all constraints are satisfied) thus, the number of

active constraints q is initially equal to zero. Also compute

-1
W and & which is equal to the right hand side of (3.10),

As a matter of notation, we will let

gq = {21,1_12, c ey

and Pq = QNA where QTQ =1 and Pq is upper triangular.

2. Determine

factive !

* N = e j
AN = min = A, = T Jng[constraints‘

3. It A" > 1 then go to step 6, else add the corresponding

column n to Eq and form

Jn
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where

PT )y = NTn
=4 ~ =q —jn
and
T .3
p=Q0-77
Set
qg=4q+ 1
~nd

k+l k *

Compute the vector (] where

T
P =
:Cl'é ﬁq
and
P =
=qg _B"
Let
y . _{active |
d" = min [(51 JefconstraintSi]

If @ >0, then let s = -_z_k + g\{qg .and go to step 2, else

delete che corresponding column from gq’ update Eq, set
g =9~ 1 and go to step 4,

The optimal input is now given by

X, = ! zk + 8 r h
i°w 1 1t 5 1

—

If x is desired it is given by

This completes Phase 4,
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By making use of the speci-l forms that some of the vectors and

matrices have, we have th. the storage requirements are as follows:

QUANTITY MEMORY LOCATIONS
W N
[ —3
L1
.9,’: 2LN
Nq LN
LN{LN + 1)
L3 —
7 NONE
n - NONE
=J
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4, EXPERIMENTAL RESULTS

A. OPEN LOOP RESPONSE

The first step in implementing an adaptive model controller is to
obtain open loop response data. This is necessary to find out if the

physiological system satisfies
y(t) = Flx,y,t) + n(t)

where F(.) defines a linear deterministic system and n(') represents
a noise source. If F(.) exists, then the adaptive model controller can
be used. We determine N and A (see Section 2.B) by measuring the
open loop step response and then solving for the impulse response. In
our experiments on dogs this is accomplished by the use of a vasodepres-
sor agent, Arfonad (trimethaphan camsylate) which produces a controlled
state of hypotension (shock). Arfonad is primarily a ganglionic blocking
agent which has the effect of opening the dog's blood pressure control
loop. When the dog is in this condition, the effect of a vasopressor
agent such as Levophed (l-norepinephrine) is easily measured. Figure 12
shows the effect of a step change in Levophed on the average blood
pressure, The two step responses in Fig. 12 were taken sequentially on
the same dog with the time between steps being about twenty minutes.
Using this data it was decided that we should set N =20 and A =35
seconds. These values for N and A have been satisfactory for all

the dogs that we have run on this system.

Since we know that Ej will converge to the impulse response G,
we would like to know what G would give these step responses. Let

Il(t) be the input and Ol(t) be the output; then if the input step

e
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was from A to B, the normalized input Iz(t) is

If the output changed from C to D then the normalized output is

OI(t) - C

O () = —g T3~

By looking at the data only at the times A, 2A, 3A, ... , we have

that the elements of G are given by the iterative equation

g, = OZ(A)

and

g, = Oz(iAQ - 02((1 -1)A) i=2,38, ..., N 4.1

The result of applying (4.1) to the step-response data shown in Fig. 12
is plotted in Fig. 13. A dominant feature of this data is the transport
delay which is about fifteen seconds. This E or the weight vector
from the previous experiment is used as the initial weight vector W
when starting a new experiment. In practice, the identification process
is run open locp until a good model has been formed. When the MSE is

small, the loop can then be closed for automatic control.

B. CLOSED~LOOP RESPONSE

The instantaneous blood pressure was sampled every 100 milliseconds
and then averaged over a 30-second period. The adaption and control
cycles occurred every 5 seconds. The first 30 to 45 minutes of the
experiment were typically used to calibrate the data link and to perform

open loop control to verify that everything was functioning properly.
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Fig. 13. The Impulse Responses Derived
from the Step Response Data.

The evolution of the weight vector vwith time is shown in Fig. 14
(the normalized weight values are tabulated in Table 1). The successive
weight vectors are plctted off to the right to aid in visualizing the
sequence of weight vectors as a continuous three-dimensional surface.
Note the similarity between this data aand the data for G plotted in
Fig. 13. The times at which these weight vectors were recorded are

indicated in Fig. 15a~g as "+'" marks on the line labeled

(control error)z.

The input (drug rate) and the output (average blood pressure) are
shown in Fig. 15a-g. 1In addition, the model output at time j+1 (one

step into the future) is plotted as a cross-hatched line. The line
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2
labeled (control error) is equal to the average value of (y, -r )2

b J

where the reference input rj (pressure set point) is indicated by a

dashed line.

In Fig. 15a & b one can see not only that the system regulates the
dog's blood pressure, but also the effects of learning due to the step
changes in the reference input. Now, in order to dramatize the inherent
stability of the system due to the continuous system identification that
is occcurring, several transients have been introduced. In Fig. 15c & d
the effect of injecting sodium pentobarbital {(a general anesthetic) is
shown, This can be considered a typical situatidn because patients often
require drugs in addition to the ones used by the control system. In Fig.
15¢ & f the dog's blood pressure regulation is again modified by the ad-
ministration of the gasses Halothane (bromochlorotriflu~roethane) and
then Amyl Nitrite (isoamyl nitrite). Halothane is an inhalation anes-
thetic and Amyl Nitrite is a coronary vasocdilator. The reason for doing
this is to demonstrate the speed at which the system can compensate for
drastic short-term changes. A very similar situation occurs in the nor-
mal course of events when the present bottle of Levophed is running low
and must be replaced by another. The time during which no drug is avail-
able can be minimized, but there is usually a detectable difference in
concentration of Levophed between the two bottles. Fig. 15g shows how well
this system regulates when the physiological system is not undergoing
drastic changes.

While the analytical problems introduced by a time-varying and/or
nonlinear system are still upanswered, the empirical results shown in
Fig. 13a-¢g are a strong motivation to continue with this approach for

regulating physiological systems.
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5. CONCLUSIONS

Al SUMMARY OF RESULTS

An original system (the adaptive model controller) for realizing
an automatic therapeutic control system has heen presented. It was
found that this controller can be realized with a mini-computer, and
that the resulting control is highly satisfactory from a medical point

of view [49].

The convergence of the (~LMS Algorithm has been analyzed for deter-
ministic inputs, Necessary and sufficient conditions for unbiased
convergence were given. These conditions were found to be easy to
implement and to cause little or no deterioration in the control problem.
In addition, the behavior of the adaptive model where the system to be

modeled is of higher or lower order, was presented,

The forﬁard—time controller which gives minimum-squared~error with
respect to the model was described, The minimization was done by a non-
linear programming technique based on Rosen's gradient projection method.
The solution to this part of the forward-time calculation was optimized

so that the amount of memory and computer time required was at a mirdmum.

An actual experiment using this system was included and described.

The results of this and similar experiments have been very successful.

B. RECOMMENDATIONS FOR FURTHER WORK

The use of an adaptive multi-model contrcller (see Fig. 16) for
blood pressure regulaticn would be very useful. The additional adaptive
processes present no fuvrther complication in the identification part of

the system, However, the optimal controller would have to be modified
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[ 5 ADAPTIVE [, ¥« |
" MODEL #K

Fig. 16. Adaptive Multi-Model Controller,

in order to make use of more than one adaptive model, One approach would
be to use the model that gives the "hest' input-output relation for the
control, and to use the remaining models as constraints only., Thus,

the physician could not only specify what the blond pressure should be,
but he could frlso Specify what range of values other body processes

could take on,

An alternate approach would be to extend the work of InsLallé[Yz] to

decide when a model should be udded vr urovpped from the concrol loop.

A controller that looks very promising for handling nonlinear
systems is the adaptive differential-model controller (sce Fig. 17).
This controller was proposed by Strom [48] who conjectured that it
should provide superior performance because it models the “local™
behavior of the system. The weakness of this approach is thut we must
look at "derivatives'' to form the model. In practice, a combination of
the adaptive model controller and the adaptive diflerential-model con-

troller may prove the most useful, The first would provide a "glabal"
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Fig. 17. Adaptive Differential-Model Controller.

model, while the second would give a "local' model. The model that is
used to find the optimum input would then be a function of the magnitude

of input.

The inverse-model controller (see Fig. 5) and/or the feedback model
controller (see Fig. 6) might also be useful for controlling physiologi-
cal systems, Comparatively little is known about these controllers, and

hence more work in this area is certainly needed.
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APFENDIX A

Norms of Vectors and Matrices

The notion of the distance between a vector and the origin is called
a vector norm and satisfies the following properties [24,45]:
M (x>0, fzff=0 11 x =0
(2> Jlex|j = je| [x|l, where ¢ is any real number

3 x vl < =l + vl

We will use the Euclidean norm for vectors

1/2

Matrix norms have an additional property which is
(@) JaBll < alf |8l
A matrix norm is said to be compatible with a vector norm if for any

) Iaxl < Al il (4.00)

The Buclidean norm for matrices is

1/2

HL n

2

= { 2 2 o,
i=1 j=1

which is compatible with the vector Euclidean rorm. We will make use of

the fact that if A is a symmetric matrix, then

|\£|| = max |7\i(ﬁ)| . (A.0)
1
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Proofs of Theorems 1, 2, 3 & 4.

Proof of Theorem 1,

Given
X X . €
i+l =3
J+ 3 x| Jd
=J
where
€, =x (G -w.)
subtract E from both sides
(4
w, . ~G) = (w, ~G) + X, €,
i A ("J "') ”x 2 =j 73
5

premultiplying by the transpose of the above we have

T
(w, -G X585

- 2 _ _ T _ -3j J
”£5+1 E” (EJ & (!J & +a ”ij”Q
. a €j£§(£j;'5) N 2 3= :—J j
5] s
Thus
2
“3341’9“ = [y - g - 2z
II—J ll
therefore B
(501~ 8] < [y - ¢

where equality holds iff ej =0.8

This completes the proof of Theorem 1.
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Proof of Theorem 2.

By Theorem 1 we know that for any N~dimensional input sequence

{ij}: the distance between w and ¢ is non-incressing. Geometri-

N
cally this means that we can construct an N-dimensional sphere in E

centered at the point G such that the point Ei will lie inside this

sphere for all i > j. Thus one way to show that Ei

o

converges to G

is to show that there is convergence along all N of any set of orthog-

N
onal axes of E . To accomplish this we introduce the operator Lj(-)

that operates on the input sequence [fj} in groups of N to produce

sequences of orthogonal inputs {7, }. Thus, for j = 2N,3N, ... let
dj-n = -:Ej—N
- T s A i i,
3; = (zl gi) e, i = j-N+1,j-N+2, j=1
L ([x }‘]_-1) = ( where
~i'3-N :
j-1 -
_ Jdi 54 5
_ —1 i=j~-N -Di l]i *
-i = j=-1 T

L.()
J

performs the Gram-Schmidt orthogonalization on our linearly inde-

pendent input sequence {xj}. Thus we can write zj =04+ ;5 where

ﬂj is the new information and is orthogonal to g,.

Thus
Wiy =9 = |1-a=5% - o =h | -6
T
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Premultiplying by the transpose of the above we have

2 “ .“GT |12
“-vfju'EH = :i[l'a < 32.]( w. -G

I T

C .
- (yj -Q)T o ijiljz I-a ——ﬂﬁ% (gj -
sl Il
— | _TIT x ;T q
- (EJ - E)T I-q 3 J2 ~3=3 (WJ - Q)
)|

ET st
2 Tt —j~j -
+ O (w,-G) J J J J (w. -G

i R i

| T
P = | P
.

~ ~T
-2oz(w —G) [YX:I G)

N

L . G)T[Eﬁii}(w__m
I%° N

————T
non-negative definite

§2
|
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Now locking at 2¢ and OF we see that

20 > Q? for o< <2

Thus the second term in (A.1) is always > the last term. Therefore

T
-9”2 < I-Cx-—ﬂﬁl (w,.-G)

v ks

where equality holds when gs = 0. The convergence due to the {ﬂj}'s
will thus form the desired upper bound. To find this upper bound wve

- need to look at the convergence due to {31} after N adaptions,

Thus keeping tabs on only the convergence due to the new information at

each adaption, we have

T
N
- = - N -
(Ej+1 G) =|I-« § 5 (Ej G) (A.2)
1)
1 _TIT
-6) = |1-q2dxld+t -Gy -
(Ej+2 g = o < 2 (—j+1 8 9j+1
5]
J _TIT Il_"]T
I TR o I | IR TR N DR O

el N T e e

where

o, & [terms involving g; as in (A.1)]
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e

.,

T

b .’3T B.UT.
1 - dmdrt | 23

(W0 -9 = 2 e (Wy=0) =044
ETSUI 1
J+N-1 T
‘\ i~i
i@ =170 2 w0 -0,
- J
S =1
Thus for all j=N,2N,3N, ... we have
3-1 T
iy

P Nt -Gy -
(w. ~G) I-a iéﬁiN “51“2 (Ej-N o 93-1

Premultiplying by the transpose of the above we have

2
-1 1 T
ig.-g_":z: -0 e Py I W (A.3)
k i ’

Now given that O < < 2, we have by iteration of the results of (A.1)




Let

J‘;i} 1 ﬂT
- _ ) i-4
i.] = |I o 4 i=“j_.‘_N Hilnz (A.4)
Thus
2 2 2 .
1y =8 = fas] Yrs-n ) i o= 2N,3N, ...

=

2
Now to find out what “Aj“ is equal to, we solve for the ecigenvalues of

A., Assume that Ej is an eigenvector. Then
i=1 T
3334
I-a [/ —s]&; = AL
i=j-N Hx,n J 47
-1

Thus we find that

and

and since

=il
=-J
and
o<a<2

we have that

-1 < AJ <1
let

max

Py % jeN<i<i-1 1

Then

-1<b, <1 for all j = 2N,3N, ...
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Now we can write

| 2 2 2
g ~Gli" < b v -6l

| 2 2 2 2.2 2
¥y = GlIT < by llwy =Gl < Bypr i, - Gl
2 J 2 2
e - oll” < 1&) vy fw, - ol J = 2N,3N, ... (A.5)
let
2 . 2
b° =lim sup b}
max 1
then
2

b 2
max < (1-qb)

where © > 0 by definition of an N-~dimensional input sequence; and

since
lim
n-y®

(1-a5)2® = o

we have that

lim ﬁ b?“_‘ﬂo'glz -0

J - 1=0 _’

Therefore

This completes the proof of Theorem 2,
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Proof of Theorem_g.

Given
T
=x .G+ n
yJ =J= J
] we have that
3
w = W a X (xTG-»n -xq_‘w_)
-3 § =3-J

o T

Subtracting G from both sides we have

%% 5"
(gjﬂ—_q) =1-a 7| ¥-08) - «a 5 (A.6)
1231 2]

Taking the expected value with respect to the noige source we have

{recall that nj is zero mean)

ijj

W, . -6 ={1-a——" VG -

s 17 7
—J

Now, substituting w. for w. and w. for w, in (A.2) we have
_J+1 —J+1 =Jj -3
Hm 3 ¢ . 8

This completes the first part of the proof.

63




ki

AT TR

Let
X xT X.n
=1 - g 33 and y. = Q _j‘j
=] 2 J
X,
5] I
Then (A.6) is
(w, G) = D_(w, -G) - 7. (A.7)
~j+1" =j=j = =
and we have for an N step
Wip=® =25 M7 7 2y
= Dy By -9 -2 7 Xy
= D2y~ % - BjaZy T Ljm
(.s!‘]+3 9_) = 2j+2(-‘£‘]+?-9—) - z‘j+2
= Dj,p @y ¥y =D By 2y " 25000 7 Ly

=D

=j +22j +1P-j (Ej =

-9 - 2j+223‘+1—j - 2j+2—j+1 - 1j+2
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H _J+k7J+N-1- T LjaN-1

- A.8
H —J N+k-7-3 1-i Z—j-l ( )




(RETA TITROARG T

Premultiplying by the transpose of the above

j=1
s -6* = ‘!kgi_N Dy 9
| 2
s’ * fatieal” + o+ B

+ croes terms involving 71'8

Taking the expected value with respect to the noise source, the cross

terms involving 7 drop out because the noise is zero mean, thus

2
(IR
i-1 2
ool + szl + o+ )L, B
- “2
H = --3 -N+1 )!1
2. 2 j=1
R T O I i [P
(A.9)
Now making use of (A,0), we have
n |2 7 D 2 =% =1 (A.10)
||=J'1“ ! k=j-N+2-k 7 “max :




Therefore

n 7 &
“L".j"g’lz < :HIN Ek(_\gj_N-g_) + kz‘luzj-k”z
=j-
Noticing that N T
7% = %2 =a2?.:§i.§_l= of o
T e IS e
3] [T
we can write
- 2 N
ORI I ETER I S
g
Now we have
. 2
”w.—G“ < Jﬂl D(w, -G + No? o
-3 =~ Ke=j~N =k —=j-N = Hfminnz
Now referring to (A.3) we see that
3=1 2
ey o7

can be written as

2

T
e ol EREe

Thus, given that 0 < ¢ < 2, we have

|
|
|

2 2
Na ¢

e

TN
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where éj is as defined in (A.4). Now to get an equation similar to

(A.5) we do the following

T BT AN TV

”wN-G“2 < bznw -5”2 + (A.11)
: where
) =
s
2 2
[P -8 < Bl - ol +
2.2, 2 2
< bNbOH_v_zo-_g“ + (by+ 1w
. :
[#an =S| < Paran-g” +
{ < b2 bob -G (b b b2 +1)
: < 2N N ” " + +hy0+ 1w
3 .
j ] % 2 _
“w —G“ b "w —G” 1L By +1fw 3 =2N,3N,
{ - £=1 k=j+i-i
Now substituting bmax for bi we get
4| - — J
¢ w—62<b2‘j w-G]2+uz b21
“—j -—“ - ‘max “—o =i = max
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Now since

and

we have substituting for w« and taking the limit

m T o
sl ST

2
o N

s,

and using the Cauchy-Schwartz inequality we have

x5 =9 < s~ 8 S Enas] 25 - €]

and thus

@ N[

lim [ ? __Gi]2 <
i-soe=i-3 ~) - 5(2-0&6)“§min”2

This completes the proof of Theorem 3.
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Proof of Theorem 4.

Given a_;i'_ o T
w' =w' + —d x, G+n, ~-x"'"" w'
=j+1 - “x. 21=-3 = J =3 =3
L3l
we have

ax' n, - w_ .,

1 - 1 "j oT - 2 - _O:).
2j+1 =¥, 7 %y (A.12)

BT G - w,

151 = 7%

where woj is weight zero at time j; or in partitioned form

T
1 ' x| n, -
0j+1 oj o , =3 j o]
- - - - = - -1+ 5 - - -l - ...T ______
) “x,“ + 1} x, | x_x, G-w,
—j+1 =J —J i B = =

Taking the expected value with respect to the noise source we have

_ _ —x_l.EI'T B = Oj
wi+1 =w' +Q J 32 --- - -
J J )X'.n G =~ W,
{=J - J
Now, subtracting G' from both sides where
B
G'={~- ~ =
I
we have
x'x3
—1 ot - _ w =01
(gj+1G)-Ia£32(ﬁjG)

Now, making the appropriate substitutions for w, G and x in (A.2)

we have
linm

S 2 o
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T R TR . i+~ o TR

T wen

or equivalently

and

1im w
Jo® =0

= f

.11m w,. =g .0
J o =3 -

This completes the first part of the proof.
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F

: letting

x'x'T
Dt o= |1aq 23T
= o 112

31

! 3
G' = |- - -
=3
G
L -
nj ‘)+1_1
LA
Z5

0
R —
we can write (A.12) as follows
nj+1 nj xtx[T
LT Rt B M Il S | 2o w6+
=j+1 G =j+1 G <2 9 =3 J
g G =51
or
] -0t - 1 L1 ]
(w 41 9_3.+1) _1__)j(_\\_rj G') + zj

Now substituting into (A.7), we have for an N step

j=1 N
wi-o = ] Dptwi -G+ E m oo o2 +7
I 5 s e A | keN-i =ITNHRS-1-1 0 251

for all j = N,2N,3N,
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—

Promultiplving by the transpose of the above

i i 12
Wt -G §; Jf‘l D (w! -G )‘1
yo80 =TT Vel
” J I! hkzv_N =k J N J N u
2
. 2 Izt 1
+57° + LT + + . Dt
IL5-1fl 215 i< I
(SR RIS k=j-N+2 = 37N
. 3-1 T/N-1 NFI
+2(w' L =-GY ) : D’ ; D' . P
Yi-n T L 2 I D Niks et T
=2 3~N k=f;N k {5 kdig = Ntke=j=1=1 j-1
2
+ (N"-N cross terms involving Zi' Zé’ i £ k) (A1)

Consider individually the expected value with respect to the noise source

of the four terms on the right.

1) The first term of (A.13) is (referring to (A.3))

last ' ]12 - —
R
where
i<} ﬂ'ﬂ'T1
L \ i~
ﬁj = |1-a i;j'—N __Hilﬂz

2) Consider the second term of (A.13):

L2
”Yn 2 + Dt 12 + . ﬂ Jil Dy L
J2iaal” Bzl o L B2
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referring to (A.9) and (A.10), we have

N
second term 5 z

but recall that

L
~
=

]
=
'

T
t t
Zi .Z.j_ -

il
=]
L}
h
mN
+
=

il
»
Q

Therefore

second term S 2No2

3) Consider the third term of (A.13):

T /N-1
-1 N-1
U jﬂ 2 E ll Dy-nelj-1-3 * Zj-1
J J k=j-N {71 kaN-1 = J 3

Note that only the 7! - term is correlated with 93_ ; thus all the

3= N’
other terms are equal to zero because z: =[00. .. O]T. Thus
. T
2 1 ' T Jﬂl [ NI::Tl )
third term = 2(w -G' ) D 1 Dj 7
j-N =j-N k=i-N =K oap =J N+k=j=N
or
T
= 1 - Gl .
205N Gyn BB25-n
where
jfl T N-1
DD, = 1 D' D'
=-J k=j-N =X kﬂl =Jj-N+k
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In e¢xpanded form we have

T
third term = 2(n, -n, ! -G

Mon ™ Py-ne? 5oy "85y DD

where
T

Z = [100 . . . 0]
The 3%-? vector drops out because it is uncorrelated with nj-N and
n)__\”1 and is therefore multiplied by zero. Similarly, only the first
term of G'._  1in non-zero. Thus

third term = -2(nj_N-nj_N+1

2 2 T
~2(n. -B ) Z DD Z
j-N =

1l

-25°2'0p 2

Now, making use of (A.00), we have

T
third term < Zozlg‘ggjz|

IA

2 Fiel j2

<2zl oo )zl (h. 1)
but
izl =1
and
i —
122, =
therefore

2
third term < 2q
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4) Consider the final term of (A.13):

(N2-N cross terms invelving z;, 7!

2y 1£K)

Notice that these cross terms can be written in the form

(n, -n ¥ (n

T
£ TP (g Ty, ) 2O MEZ

where M is & matrix corresponding to the product of the Eﬁ's. Only
2(N-1) of these terms are non-zero. These are the terms where

]i-—k‘ = 1, For each of these terms we have (see (A.14) and following)

T 2_T
By D () 2 Mz = -2 e

A

lizl w1zl

S c
Thexrefore

2
fourth term < 2(N~-1)0

We have now proven that

27, 2
5o s g3+ 2

for all j = N,2N,3N,

Now substituting into (A.11), we have the desired result

2 2
2 40 Njjix' ”

lim (w -G") <__|.l:EEx . |
J—-)m-J -3 =3 - ob(2 -ab)

This completes the proof of Theorem 4,
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APPENDIX B

A Goneral Description of the Algorithm Used in Phase 4.

In the last decade many methods have heen developed for minimizing
the quadratic cbjective function (3.8) subject to linea. inequality con-
straints (3.10) [40-44]. One of the most promising is given by Goldfarb.
His algorithm extends Davidon's variable metric technique for constrained
minimization and is based on ideas found in Rosen [41]. When the Hessian
is I, as it is in our case, Goldfarb's algorithm is equivalent to
Rosen's Gradient Projection Algorithm.

The algorithm presented here is specifically designed for the case
of a quadratic objective function (3.8), linear inequality constraints
(3.10), the Hessian matrix of second partial derivatives being equal to
the identity matrix (3.11) and the gradient being equal to =z.

The algorithm described in Phase 4, which incorporates the ideas of
Rosen and Gill and Murray [47], was worked out by Kaufman [486].

We want to minimize

subject to the constraints

T_k
a

Z >4 m=1,2, ... 4LN
nP.—

m

where

T

A necessary and sufficient condition for f(z¥) to be the global minimum

is that there exists an (1 such that

b
—~
N
x
A d
I
=
=
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where

_E_q = {21)22' s P_q}

The columns of Eq are the q unit normals to the hyperplanes

whose intersection is an affine subapace in which z* lies. The itera-

tion equation is thus

(B.1)

where T _
B =1 -N@MN)'N (B.2)
= wCem= -

is Rosen's projection operator that projects Em into the constraint

manifold, Note that in the unconstrained case q equals zero and £ =1

and thus (B,1l) reduces to the one-step Newton method, Ek+1 = 0,
Substituting for gq in (B.1) we have
1 -
zk+ =N (NTN ) lNTzk
=4 =4=q -
or equivalently
+1
zk =Nd (B.3)
— =q—
where
T -1
= (N'N) B.4)
a Zada’ £q ¢

The elements of &q correspond to the q active constraints of (.

The computation of (I can be quickly performed as two back solve opera-

tions if the following construction is employed. Assume that NT is

T T
q X t, then Eq can be written as Nq = QPq where Q Q@ = QQ = ; and

Pq is 2 q X q upper triangular matrix [45]. Thus, (B.4) can be
=

written as
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N N =
=Q=0=  ~q
T.T
P QP =
=qg ==qg- -G
T
PP = £
=Q=q(—1 —q
Since P is an upper triangular matrix, can be quickly calcu-

lated by using two back solve operations,

e-]
w
il

and

i)

[=3
il
I

The addition of constraints to Nq is done as follows:

i
Let N ={N 1n . If N =QP , then
=q+1 - ;-4 =(} ==
[ ;
NN = | NT Nin
= +1l=q+1 =qmq ' =0—q
- = =l = -
i
nTN nTn
~4=q ! —g~-q
e 1 J
i T LI i
= PP N n
=4=q ' =0—q
- e mlm -
1
nTN | n
—Q=q —Q—Q-J
- i
1f we put Eq+1 in upper triangular form, then
P = P
=q+1 = |z
- - -
o} , P
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and
1
T T T

N = = ;

§q+1=q+1 £q+1£q+1 gng : gq KA
---r -
T. T 2
TP 1YY+ p

- = I_...

Thus to calculate £q+1 we need to solve for 7 and p where

PT7’ = NTn
=0~ =4-q

and

o
U
-~
5]
-]
H
[ )
~
-~
N

It

(l-sz)%

When a constraint is dropped the corresponding column must be
deleted from gq. If the kth column is deleted, we have ¢q - k ele-
ments below the diagonal which must be set to zero. This is easily
done using Given's rotation matrices [45].

The author suggests that interested readers see [40] Section 8

and [46] for a discussion of rates of convergence and operation counts.

e

Ty

| £a8
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APPENDIX C

A PROGRAMMED VERSION OF PHASE FOUR

REAL PROCEDURE PHASE4(N,LN,W,X8,R,4,B,C,D)3 VALUE N,LN}
INTEGER M,LNJ REAL ARRAY w,XQ,R,A,8,C,D}
BFGIN

REAL T3,T2,73,14,LSTAR,ASTAR,NORM2S8,NORM2Z}

INTEGER 0,J,K 58, J1,32,33,14,12,13,INDEX,START}

& PDIMU{CLN(LN+L))/2)
FQUATE MAXLNDAD, [ NAD160,XVYD],01=2,PDIMNVE20,EPSILONCE, 25«5}
REAL ARRAY HR,alIN,Z,S;NDRM, ALPHA,BETA[LIMAXLN] ,PLL3PDINM},
LItiNal:
TNTEGER ARRAY NUI[{s$MAXLN]}
TNTEGER PRCCECURE INL(IVS INTEGER I}  INIOU((l=1) MOD LN)+i)J

INTEGER PROCEDURE IN2(I1)} INTEGER I
CASE (((I=1) O LN}+t )
BEGIN
IN2U=2; IN2O=13 iN202) IN291)
END}

AOOLEAN B1,B2/
ROOLEAN ARRAY ACTIVE [{:LN4)}
LAREL STEP1,STERP2,STFP3,STEP4,STEPS,STEPS)

QO = REPLACEMENT ¢ = INTEGER DIVISION

WINs WB INVERSE
WINCI,J)= W(l+¢lwj) FOR 1l22)
PLI,J)=s P(I+J(J=1)/2) FOR [I<zJ
INT AND INZ ARE INDICATOR FUNCTIONS SUCH THAT
INZ(J)® ~2 IF COCNSTRAINT IS I
IN2(J)s «1 IF CONSTRAINT IS =]
IN2¢J)x 2 IF CONMSTRAINT IS HWIN
IN2¢J)s 1 IF CONSTRAINT IS eWIN
INTCY) IS AN INDICATOR ARRAY WHICH EQUALS THE ROW NUMBER
OF THE CORRESPONDING INZ2(I1) BLOCK,
NQ(I) IS AN INDICATOR ARRAY WHICH POINTS TO THE ITH
ACTIVE CONSTRAINMT
NORM(I)s NORM OF THE I=TH ROW OF WIN
ACTIVE({I)}x TRUE IF THE leTH CONSTRAINT IS ACTIVE
INUEX® THE COLUMN WHICH IS TO BE ADDED OR DROPPED

e 90 PO PO PO RO G0 QO PO DO Q0 2O Q0 P PO PO PO QO DO

TEPL: Q0f) STARTO!;
§ COMPUTE HREH=P
FOR JU! TO (N1UN=1) DO
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BEGIN
TI0eR 1J])
FOR K¥N STEP «i UNTIL (JiOJ+1) DO
TIOT oW [K) wXD[JL=K]}
MR [J1OTL)
END J}
FOR JON.T10 LN DO HR{JIVeR[J)?}
L COMPUTE Z0s WBeX@4HeR
FOR JOL TO LN DO
BEGIN
TIOHR[J); J10Je1}
FOR KO(IF J<sN THEN 1 ELSE J#i=N} TO J Dy
TIOT14W [JlwK) «XB (K]}
ZUJIOTLF S{JI0=T1)
END Jj
E COMPUTE WIN & NORM
NORM (11 OT3OWINLL) 0L, ﬂlw!ll: T29134T3;
FOR J¥2 TO LN DO
BEGIN
! T100,01 JiOJei}
‘ FOR KO(IF J<=N THEN { ELSE J+leN) TO (J20Je1) DO
: TIOTL6WIN K] *W[J1mK] ?
r4v373-71; WINIJIOTE) T2UT2+T4¢T4) NORMIJIUSORT(T2)}
END J7
8 CALCULATE L
FOR JO1 TO LN DO
BEGIN
) LIJIVALII»RIJYIS LIJLNIJOR[JIwB{J)) T190,0F J10OJél)
i FOR K®{ TO J DO
? TLOTLeWIN [JL~K] #HR (K}
LIJ*2#LNIOC(JI4TL) LIJ+3+LNIO=(DLJII*TL))
FOR KO2 TO 3 DO ACYIVELJ+KwLNJOFALSE}
END I}
STEP21 LSTARVD!,2} NiD4e[ N}
FOR JOU! TO NI DO IF NOT ACTIVE(J) THEN
L CALCULATE LAMBDAILJ] FOR ALL J NOT IN THE SET OF ACTIVE
) COLMSTRAINTS
BEGIN
; JIQINL ()} BIVIN2(J))
I{VIF ABS(Bi)=34 THEN ={ ELSE 17}
IF Bl THEN T1OCI{«L(J1=2Z(J1))/S(JY)
ELSE
BEGIN
T3UT208,0F J20J1+4}
FOR K®{ To Ji DO
BEGIN TAOWIN [J2=K] )
TIOT3+T4eZ (K] ) T20T24T4eS (K} )
ENC K}
TIOCItel [J)=T3)/T2)
ENDJ
IF (TI1>EPSILON) AND (T1<LSTAR) THEN
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& RECCRD THE VALUE AND INDEX OF THE MINIMUM, NON=

& NEGATIVE VALUE OF LAMBDA)
BEGIN
LSTAROTL; INDEXOJ)
END?
END J;

STEP3s IF LE&TARal THEN GO YO STEP6)
& ADD THE INDEX JUST FOUND TO THE SET OF ACTIVE CONe
& STRAINTS
QUG+17 STARTOQR; NQIQ)TINDEX)
I191F ABS(IM2{INDEX;)=i THEN =LN ELSE LN;
ACTIVE [IMNDEX+I1YQACTIVE LINDEX)OYRUES
& UPDATE 2
FOR JOU TO LN DO Z1JIQZUJ] +LSTARWS (I
IF Qay THEN BEGIN P{1194) GO TO STEP4} ENDJ
8 UPDATE P By ADDING A COLUMN
BIOQIN2CINDEX) S NiIOQels J3IVAeN{02) IIVINLICINDEX)P T3®2,09
FNR JUy T0O M1 DO
BEGIN
IIONGIIY:  I2QINL(IL1)) JiVJ=1} J2UJ+¢J102; B2VIN2(I1)?
IF R2 THEN
IF BY THEN Ti92,0
ELSE TIVIF 12>13 THEN @ ELSE WINII3=Y24{J/NORMI(IY)
ELSE

IF BY THEN T4OQIF I3»T2 THEN @ ELSE WIN[I2«IJ+1)/NORMI(12)

ELSE
BEGIN
TivN,01 I1CARS(I2=13);
FOR K91 TO (TF I2<I3 THEN I2 ELSE 13) DO
TIOTL+WINIKY +WIN[K+I1]}
TIOTL/ (NORMITI2] «NORM {131}
ENDJ
IF ABS({(B2«Bt)®2 THEN TiU=«T{}
FOR KU{ TO J1 DO TiOT1=P{KeJ2)*P [K+J3]}
T2QP [J+J3IOTL/P [JeJ2) 3
TIOTI+T2#T2)
END J7
P{Q+J3IUSARY(1,2=T3)?
STEP4: FOR JOSTART TO G DO
& SOLVE FOR THME ELEMENTS OF BETA
BEGIN
TIONG LI} JiOJ={} J20J¢J102} T4OL (I1)?
TIOIF IN2(I() THEN T4 ELSE T4/NORMIINICILI1}
FOR K01 TO J! DO TiVT1«P{K+J2)*BETA[K]
BETA[(JIOTL/P{J+J2]}
ENC J}
ASTAROD,.Q?
FOR JOQ 3TEP =1 UNTIL | DO
& CALCULATE THE ELEMENTS OF Al PHA
BEGIN
TLOBRETALJ]} J1OJ+1y J30J20J)eJ102)
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FOR K9J{ TO @ DO
BEGIN
TIOTLP [JeJ2) «ALPHA [K] } J2VJ24K
END?
TIOALPHA[JIOTL/PJ3))
& FIND THE MIMTMUM ELEMENT OF ALPHA AND REMEMBER 17S
] INDEX
EIF TI<ASTAR THEN BEGIN ASTARUTL} INDEX®J} END)
ND J}
STEPS3 IF ASTAR®2 THEN
BEGIN
NORM2SONORM2Z92,2)
FOR JO§{ TO LN DO
& CALCULATE THE ELEMENTS OF 3
BEGIN
TiV=21J17 NORM2ZONORM2Z+Tie¢T1}
FOR K¥1 TG Q@ DO
BEGIN :
IJONQ(KY I29IN2(13)) T1QINI(I3))
T2QIF I2 THEN IF IiaJ THEN § ELSE @
ELSE IF JesI{ THEN WIN[I{el=J)/NORMIIt] ELSE O}
IF ABS(12)mi THEN T20eT2}
TIOT +T2«APHA[K])
END K}
S[JIOTL) NORM2SOUNORM2S4T1eTy)
END J}
IF NORM2S <XV#NORM2Z THEN GO TO 3TEP6
ELSE GO TO STEP2}

END IF)
S DROP THE APPRQOPRIATE COLUMN FROM P
B0R={) STARTUINDEX } I29NQ (INDEX])

I19IF ABS(IN2(I2))s! THEN «_LN ELSE LN/
ACTIVE(I2+I11CACTIVEII21OFALSE}
IF INDEXsQ+1 THEN GO TD STEP4)
FOR JUINDEX TO @ DO
BEGIN
JioJei} I19J20J1+3/2) J30I2]) NG tJIONGLJSLY)
FOR K®1 TO INDEX DO P([K+J3IOP[K+J2))
& USE A GIVENS ROTATION TO ELIMINATE THE EXTRA ELEMENT
TIOPIJeJ2) ) T2VP(J1+J2}) )
PLJ2IOTIOSQRT(T1+T14T2aT2))
TIOTL{/T3} T20T2/73)
FOR KOJ{ TO0 Q DO
BEGIN
129181 T1QI1+¢K) TAOP{J+1I11) TIVP([JLell)}
PIJ+I2IOTLeT44T2¢T3 PLJL4ILIVT2¢TdnTiwTI}
END K}
END )
GO YO STEP4)
STEPG61 PHASE4O(Z([1)+S{LiI=HRILI)I/W[L)D
END OF PHASE4)
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